Hydropower: la feuille de route de

Agence de l'Environnement et de la Maîtrise de l'Energie

Hydro 21 – Grenoble – 21 nov. 2012

Technology roadmaps status

Low-carbon energy technology roadmaps

Introducing the IEA Technology Roadmap: Hydropower

- Co-authored with Brazil's Ministry of Mines and Energy
- Workshops in Paris, Riode-Janeiro, Washington
- Reviewers from agencies, academia, governments, industry, NGOs
- Support from CEPEL, ADEME, Iberdrola

Technology Roadmap

© OECD/IEA 2012

Recent Trends

New capacity additions in hydropower since 2005 have generated more electricity than all other renewables combined

Short term forecast

Hydropower remains the largest but its share declines
The bulk of its growth comes from emerging economies and developing countries

A large HP potential remains

Source: Kumar et al, IPCC SRREN 2011

Vision for Hydropower IEA Roadmap

Hydropower generation will double by 2050 and reach 2 000 GW and 7 000 TWh, mostly from large plants in emerging/developing economies

© OECD/IEA 2012

Hydropower and CO₂ emission reductions

- Compared with the laissez-faire scenario (6DS) of *Energy Technology Perspectives 2012*, hydropower in this roadmap would cut <u>1 bn tCO₂</u> emissions per year by 2050
- New hydropower plants developed under this vision would total <u>3 bn tCO₂ emission cuts per year by 2050</u>
 - Assuming they replace a mix of fossil fuel plants

Hydropower drivers

- Affordable energy, security of supply
- Multipurpose water resource management
 - Irrigation, freshwater supply
 - flood protection
 - Navigation
 - Recreation
 - Climate change mitigation
- Flexible capacities, help integrate wind and solar PV

The need for flexibility increases

Variability is not new, but it does get bigger with variable renewables (wind power, solar PV)

Renouvelables: rôle dominant à terme (2050)

Renewables provide 57% (2DS) to 71% (Hi-REN) of World's electricity

Forte pénétration des énergies variables

Variable renewables provide 22% (2DS) to 32% (Hi-REN) of World's electricity Reservoir hydropower, an excellent asset for integrating wind and PV

In Europe and the US, hydro is increasingly providing flexibility, helping integrating variable renewables

- Increased electric capacity of existing HPP
- Pump-storage hydro:
 - 140 GW in service, 50GW in development
 - By 2050: 400 to 700 GW

PSP: 99% of current on-grid storage

- Pumped-hydro plants the reference solution
 - 140 GW in service, 50 GW in development

PSP developed from existing hydro plants

- "off-stream" or "pumped-back" schemes
- Small energy volumes but large power capacities
- Daily/weekly storage does not require large areas

Storage options: costs and availability

Note: PEM FC = Proton exchange membrane fuel cell; SOFC = Solid oxide fuel cell; NiCd = Nickel cadmium battery; NaS = Sodiumsulphur battery; Va Redox = Vanadium redox flow battery; CAES = Compressed air energy storage. For the high case the assumed price for electricity is USD 0.06 per kWh; for the low case USD 0.04/kWh.

New options for pumped-hydro plants

Closed-loop plants

- Using natural declivity
- Possibly using the sea as lower reservoir (Okinawa-style)

One possible site in Normandy near Dieppe, head 95m, area 6 km², storage 65 GWh, capacity 2 to 6 GW

© OECD/IEA 2012

Source: Lempérière 2011

Options for flat countries exist

Artificial energy islands combining pumpedhydro, wind power and possibly tidal are being considered

Source: Kema 2007.

Vision for PSP deployment by 2050

		China	USA	Europe	Japan	RoW	Total
Low	vRE/total energy	21%	24%	43%	18%		
	Hydro/total energy	14%	6%	13%	12%		
	PSP/total capacity	4%	4%	6%	11%	2%	
	GW	119	58	91	35	109	412
High	vRE/total energy	34%	37%	48%	33%		
	Hydro/total energy	15%	6%	11%	13%		
	PSP/total capacity	5%	8%	10%	12%	3%	
	GW	179	139	188	39	164	700

P

But economic challenges appear...

The merit order effect reduces spot market prices, and the peak-base spread...

... undermining storage economics...

Power generation in Germany, 14 May 2012

	2007	2008	2009	2010	2011
Phelix Base [EUR/MWh]	37.99	66.76	38.85	44.49	51.12
Phelix Peak [EUR/MWh]	56.16	88.07	51.15	55.02	58.95
Spread [%]	149	134	132	124	115

hr

Source: Top, EEX Transparency Platform; Bottom EEX cited as in http://www.agoraenergiewende.de/fileadmin/downloads/Agora Energiewende Impulse Kapazitaetsmarkte.pdf

... at least for the time being

Overview Actions

- Sustainability and public acceptance
- Technology development
- Financial challenges
- Policy and Market Design

Sustainability challenges

- Dam safety
- Wildlife, biodiversity
- Water quality
- Impacts of civil works

- Population resettlement
- GHG emissions

An example of a sustainability profile using IHA's Operations tool. Source: IHA

Environmental benefits and mitigation

- Considerable environmental benefits: reduced GHG emissions, air pollution, etc.
- Sustainable resource and various benefits
- Mitigation of negative impacts
 - Improving procedures: protocols and best practices
 - Improving technology: fish steps, fish-friendly turbines, aerating turbines, oil-free turbines,
 - Improving management: land and forest restoration, flow requirements, etc...

© OECD/IEA 2012

Technical improvements

- Strengthened environmental requirements may reduce hydropower output and potential
 - E.g. water framework directive in the EU

Technical

improvements allow to increase or maintain performance and output, and reduce environmental impacts

Source: Lier, 2011.

Financial challenges

Technology	Bioenergy	Bioenergy co-firing	Geothermal	Solar PV	CSP	Hydro	Wind onshore	Wind offshore	New coal	New gas CCGT	Micro hydro	Small-scale Solar PV	Small-scale Biogas
min USD/ MWh	80	80	35	155	160	20	50	140	40	40	35	185	110
max USD/ MWh	250	140	200	350	300	230	140	300	90	120	230	600	155

- Although cost-effective, hydropower faces financial challenges
 - Large projects, capital intensive, long building times
 - Returns on investment vary from year to year
 - Long tenures from commercial banks difficult to get
 - Flexibility under-valued on most markets
 - Market design based on marginal running costs may not deliver the right incentives
 © OECD/IEA 2012

Policy and market design

Governments and stakeholders should establish/ update inventories, at river basin level where appropriate, incl. options for upgrading/redeveloping existing plants or non-hydroelectric dams

- Set targets and track progress
- Promote policy framework and market design for HP
- Check that developers document their approach to sustainability, mitigate or compensate negative effects
- Develop effective financial models to support HP in developing countries

Policy action is needed for reservoir/PSP

Reservoir hydro and PSP priceless...

Beyond HP electricity generation, to support wind and solar PV deployment addressing variability

...but must be priced!

- Market designs must be completed or changed
- Reconsidering grid fees can be pragmatic first step
- PV and PSP have very different lead times and markets cannot easily handle the gap
 - Especially as they are based on marginal run costs
- Long term planning is required