RDV experts hydro

Flexibilité de l'hydroélectricité : hybridation & digitalisation : les solutions pour le futur

3 avril 2024

Comment intégrer la flexibilité dans la planification des réseaux électriques?

Marie-Cécile Alvarez-Hérault Grenoble INP-UGA, chaire SmartGrids, CIRED

Contexte

- Développement massif d'énergies renouvelables raccordées au réseau électrique de distribution et de nouveaux usages électriques → augmentation de contraintes réseaux
- Approche encore assez conservative (investissement) → limitation du développement des ENR et coût important pour la société
- La flexibilité pourrait permettre de mieux gérer le réseau et la planification des investissements

Retour d'expérience GT CIRED "Network planning and system design with flexibility"

21 experts des réseaux électriques, 13 pays

9 gestionnaires de réseau électrique

3 instituts/sociétés de recherche

Chine

- 1 centre de recherche R&D du gestionnaire de réseau de transport de gaz et électricité
- 6 universitaires

Portugal

Allemagne

Italie

Vision de la flexibilité

Flexibilité locale pour le GRD

Flexibilité globale (englobe les missions du GRT)

La flexibilité est une <u>modulation de puissance</u> de toutes ressources de flexibilité en <u>réponse volontaire</u> à un besoin (un signal). Cette réponse permet <u>au système électrique et autres parties prenantes</u> d'optimiser leur condition d'exploitation (coûts, profil de tension etc.) sans dégrader le niveau de sécurité et de fiabilité.

Remarques

- La puissance = active et/ou réactive
- Modulation = augmentation ou diminution d'une entrée/sortie
- Ressources
 - o consommateur final via ses équipements contrôlables (chauffage, chauffe eau, véhicule électrique etc.)
 - consommateur industriel
 - producteur
 - stockage
 - o communauté d'énergie
 - microréseau
- Signal : direct (contrôlé) ou indirect (incitation ou restriction)
- Exemples de services de flexibilités : réglage de congestion, différer/éviter des investissements dans les réseaux électriques, services systèmes (réglage de fréquence), équilibrage production/consommation, réglage de tension, inertie synthétique, réduction des pertes Joule, optimisation de l'autoconsommation, équilibrage des phases, augmentation de la capacité d'accueil (ressources décentralisées d'énergie)

8 recommandations

- T1 Développement d'une méthodologie et d'outils de simulation appropriés pour intégrer la flexibilité dans la planification
 - R1 Modèles et outils intersectoriels permettant d'intégrer d'autres secteurs énergétiques
 - R2 Transparence totale du réseau électrique
 - R3 Nouvelles métriques liées au risque, à la fiabilité, aux incertitudes, à la capacité d'accueil et au marché
 - R4 Collaboration avec la communauté des sciences sociales autour de la flexibilité pour impliquée et modéliser les « consom'acteurs ».
- T2 Facilitateurs techniques et économiques
 - R1 Tarifications dynamique comme game changer
 - R2 Compatibilité et/ou normalisation des réseaux et protocoles de communication
 - R3 Développement d'un marché des flexibilités pour accélérer l'intégration de la flexibilité
 - R4 L'échange de flexibilité doit se faire au-delà des frontières de l'organisation

8 recommandations

- T1 Développement d'une méthodologie et d'outils de simulation appropriés pour intégrer la flexibilité dans la planification
 - R1 Modèles et outils intersectoriels permettant d'intégrer d'autres secteurs énergétiques
 - ou adaptés à la co-simulation
 - R2 Transparence totale du réseau électrique
 - o digitalisation des modèles des réseaux (jumeaux numérique)
 - forecasting
 - R3 Nouvelles métriques liées au risque, à la fiabilité, aux incertitudes, à la capacité d'accueil et au marché
 - o KPI traditionnels : CAPEX, OPEX (pertes et parfois énergie non distribuée et coupures) et SAIDI (critère B), SAIFI, Voll
 - Nouveaux KPI:
 - risque de non disponibilité de la flexibilité,
 - volonté de payer ou de ne pas payer de la société (versus approche zéro risque),
 - élargissement de l'analyse coûts-bénéfices à de l'analyse multicritères
 - Incertitudes (méthodes stochastiques, multi-scénarios)
 - R4 Collaboration avec la communauté des sciences sociales autour de la flexibilité pour impliquer et modéliser les « consom'acteurs ».
 - Sciences sociales et modèles d'IA

8 recommandations

- T2 Facilitateurs techniques et économiques
 - R1 Tarification dynamique comme game changer
 - o dépendance spatiale et temporelle -> trop complexe pour l'utilisateur final?
 - o besoin d'un marché
 - flexibilité explicite/implicite
 - R2 Compatibilité et/ou normalisation des réseaux et protocoles de communication
 - o beaucoup de protocoles différents (niveaux de tension & pays)
 - o besoin de standardisation (en particulier entre les EMS et les installations clients finaux)
 - R3 Développement d'un marché des flexibilités pour accélérer l'intégration de la flexibilité
 - o plateformes de flexibilité existantes ou en expérimentation → transparence quand exploitées par un tiers
 - o challenges techniques et réglementaires : rémunération, partage des responsabilités, priorisation des services de flexibilité
 - R4 L'échange de flexibilité doit se faire au-delà des frontières de l'organisation
 - GRD/GRT
 - o règles de priorisation à définir (local avant global)
 - mutualisation des investissements

Merci de votre attention