

# STOCKAGE HYDRO

7 decembre 2018

# Storage overview



Wallpaper\_http://gooilla.deviantart.com | Or ginal image\_http://visibleearth.nasa.go

## A need of storage Value of pumped hydro depends on...

- Electricity price spread for *arbitrage* And also
- Standby capacity payments
- Ancillary services payments





# Hydro storage: a key role....



Capital costs of energy storage solutions (\$/kWh)\*





Economic Analysis

Storage footprint



**Footprint of batteries to cover equivalent storage capacity** 



Lifetime and lead-time

\*Full CAPEX including Civil works costs Source: Range of capital costs for different technologies based on E of Different Energy Storage Technologies report (https://www.intege of Different Energy Storage Technologies Technolog

ġę

Source: EASE, EPRI, Journal of Energy Storage vol8, Techno-Economic Analysis of Different Energy Storage Technologies, GE Marketing

# **PSP System Technologies**









- Wallpaper, Mtp://gooilla.deviantart.com | Or ginal image\_http://visibleearth.nasa.go

# Integrating Renewables at the Grid Periphery



Wallpaper: http://godilla.deviantart.com | Or ginal image\_http://visiblees/th.nasa.go

# Alqueva II, Portugal

## Higher flexibility thanks to hydraulic design improvement

+37% Continuous operating range

+50% Total operating range



## Challenge

Integration of intermittent renewables at the grid periphery requires new operation modes, with higher flexibility and wider operating range

## **GE Solution**

Improved low head design thanks to advances in computer modeling and CFD technology

New hydraulic design allowing a shift in the performance hill towards the new needs of operation especially full load in turbine mode Operator: EDP Output: 520 MW (Alqueva I & II) Head: 71 m Speed : 136 rpm Turbine technology: Single-stage Generator technology: fixed speed Scope:

- 4 x 130 MW pump turbines & motor generators
- Control & excitation systems
- Hydro-mechanical equipment
- Erection & commissioning

Commercial operation: 2013



# Greater Flexibility in Turbine mode



(ge)

**Overcoming the intrinsic characteristics of Francis Turbines and better monitoring** 

**Optimal** 

# Hydro Pumped Storage as a Grid Asset



# PSP as a Grid Asset

# China

Goal to provide at least 15% of primary energy consumption by 2020 from non- fossil energy, and 20% by 2030

Challenges:

- Intermittent renewables integration
- Less start & stops of fossil fueled power plants
- Peak regulation and valley filling
- Optimization of power transmission system Electricity Generation Mix, TWh



## 13<sup>th</sup> five- year plan

PSPs in operation in 2016: 26,690 MW

Start of construction of a total of **60,000 MW** of pumped storage. In 2016: 26 PSPs under construction (**32,110 MW**)

Total installed capacity of PSP to be built up:

40,000 MW by 2020

90,000 MW by 2025

## +60 GW of PSP in 10 years

# Huizhou, China

#### **PSP** as a grid asset



## 34 GWh

## Challenge

Energy storage is mandatory in Guangdong., the power grid requires emergency reserve capacity of 5,000 MW

## **GE Solution**

- High output level, high efficiency, short starting time
- Increase in peak capacity in an area where thermal and nuclear are the only energy providers
- Outage decrease ( overall from 10 to 12 yrs)

Operator: China Southern Power Grid Output: 2450 MW Head: 517 m Speed: 500 rpm Turbine technology: Single-stage Generator technology: fixed speed Scope:

- 8 x 306 MW pump turbines
- 8 x 334 MVA motor generators



# Hohhot, China

#### Flexible energy storage

**12 GW** PSP installed or under construction by GE in China

# Design for flexibility





#### Challenge

Complement wind farm production, and provide the grid with power for peak demand, supplemental power for periods of reduced production, energy storage for emergency power stand-by and frequency regulation.

#### **GE Solution**

Specific design of pump turbines and motor generators

- Higher stability while operating over a large head range
- Ability to withstand load and thermal cycles due to frequent starts and stops
- Higher availability to cope with demand from the grid

Operator: Hohhot Co., Ltd.
Output: 1224 MW
Head: 521 m
Speed: 500 rpm
Turbine technology: Single-stage
Generator technology: fixed speed
Scope: 4 x 306 MW pump turbines & motor generators, technical and quality support

# Hydro Pumped Storage with new driver



Wallpager, http://godilla.deviantart.com | Original image\_http://visibleearth.nasa.go

# Regional Grid Blackout in South Australia



Source: http://joannenova.com.au/2016/10/sa-blackout-three-towers-six-windfarms-and-12-seconds/

## > A stable grid needs "synchronous inertia"

Wind farm locations

Mangaroo Iskand

# Australia

#### **Reduce lead time**



## Lead time < 35 months

Two contractual phases:

Optimization

EPC

## Challenge

Coal end of life, Gaz price increase Rapid development of renewable ( wind and solar) Strong need of storage

#### **GE Solution**

New contract basis Available portfolio of hydraulic profile Reduce lead time Fix or variable speed

## **Operator**: IPP

## Revenues based on

- Arbitrage ( pricing every 5 min)
- System Restart Ancillary Service
- Energy Transformation (Regulatory Investment Test- Transmission):

Inertia Voltage support Frequency control



# Alpine Battery



Wallpaper: http://gooilla.deviantart.com | Original image\_http://visibleearth.nasa.gov

# Linthal PSP - Axpo Switzerland

## Variable Speed Units (Machine Data)

| Number of units                      | 4                         |
|--------------------------------------|---------------------------|
| Apparent power                       | 280 MVA                   |
| speed                                | 470-530 min <sup>-1</sup> |
| Rated head                           | 700 m                     |
| Starting time in turbine mode        | 120 s                     |
| Starting time in pump mode           | 240 s                     |
| Rated voltage                        | 18 kV                     |
| Rotor diameter                       | 4672 mm                   |
| Weight of complete shaft arrangement | 410 t+60 t                |
| Converter power (AC excitation)      | 34 MW                     |





©2017. General Electric Company. All Worldwide Rights Reserved

# Linthal Variable Speed PSP





Installation of spiral case

Stacked rotor rim

# Fast dynamic power response



## **Conventional PSP**

• Reaction time depends on hydraulic time constant





## Variable speed PSP

- Same reaction time as batteries
- Same pressure in the hydraulic system



# Linthal PSP - Axpo Switzerland – Dynamic II

## **Primary frequency test**

- Dedicated tests done with Swiss TSO (swissgrid)
- Machine is reacting much faster to the frequency changes then required
- Primary frequency control could be confirmed in both turbine **and** pump mode

## **Results in Turbine and Pump mode**





# Integrating Renewables in an Island Grid



# Gilboa, Israel

## Higher flexibility to integrate renewables in an island grid

**90 Sec** transition from standstill to full generation

18 year

**O&M** contract

# 

## Challenge

Isolated grid needing power independence and strong reliability for the installation of the 1<sup>st</sup> PSP in the country, managed by private investor

## GE Solution Full turnkey solution

Electromechanical equipment contract incl. Engineering, Procurement and Construction

Full Operation and Maintenance for :

- Improved performance
- Reduced operational risks

Operator: PSP Investment Ltd Output: 300 MW Head: 500 m Speed : 750 rpm Turbine technology: Single-stage Generator technology: fixed speed Scope

- 2 x 150 MW pump turbines & motor generators
- Main Inlet Valves
- Hydromechanical Gates
- Mechanical BOP
- Electrical BOP
- Control System with cybersecurity



# Integrating Renewables in an Island Grid

## 2 Contracts

- EM1 Contract: New Build contract incl. Engineering, Procurement and Construction
- O&M contract: Full Operation and Maintenance over 18 years

## Scope:

- Turbines and Main Inlet Valves
- Generators
- Hydromechanical Gates
- Mechanical BOP
- Electrical BOP
- Control System with cybersecurity







# Hydro Pumped Storage upgrade



Wallpaper - http://gooilla.deviantart.com [ Or ginal image - http://visiblees/thinasa.go

# Cabin Creek, USA

### **Extending flexibility and output**

## High head : + 2m

+38% maximum input

+**10%** power output





## Challenge

Cabin Creek hydropower plant was commissioned in 1967 and is classified as a facility required for reliable operation of the grid. Upgrade needed due to increased penetration of intermittent wind and solar.

#### GE Solution Upgrading for higher overall efficiency

- Increase operating head (high head) and maximum output
- Increase operating range in Turbine mode
- Improve cavitation

Operator: Public Service Company of Colorado (a regulated public utility 100% subsidiary of Xcel Energy Inc. Output: 324 MW Head: 363 m Speed : 360 rpm Turbine technology: Single-stage Generator technology: fixed speed Scope: refurbishment of 2X162 MW units – pump turbines, motor generators, wicket gates, head

©2017. General Electric Company. All Worldwide Rights Reserved

covers, excitation system

## **Alpine Battery**

- Grid regulation in Pumping mode
  - High Power Variable speed
- High Head
- Voltage support
- GE Converters
- Tough site conditions

## Integrating Renewables in an Island Grid

- Reactivity : sequence times
- Private customer needs :
  - Long-term (18 years) O&M
  - Full integrated Electro-mechanical package
- Control Systems with high-level Cybersecurity

#### A new business model

- Shortened lead time
- Early stage involvement

## **PSP** as a Grid Asset

- High capacity
- Close to consumption
- Avoid Wind curtailment
- Massive development

# Integrating Renewables at the Grid periphery

- Need for balancing
- Weaker grid requiring flexibility and reactivity
- Improved existing units
- Application of Digital

## Transformation of existing plant

- Extending flexibility and output of existing PSP
- Upgrading fixed speed PSP to Variable Speed for higher efficiency and flexibility



